Automatic Music Genres Classification using Machine Learning
نویسندگان
چکیده
Classification of music genre has been an inspiring job in the area of music information retrieval (MIR). Classification of genre can be valuable to explain some actual interesting problems such as creating song references, finding related songs, finding societies who will like that specific song. The purpose of our research is to find best machine learning algorithm that predict the genre of songs using k-nearest neighbor (k-NN) and Support Vector Machine (SVM). This paper also presents comparative analysis between k-nearest neighbor (k-NN) and Support Vector Machine (SVM) with dimensionality return and then without dimensionality reduction via principal component analysis (PCA). The Mel Frequency Cepstral Coefficients (MFCC) is used to extract information for the data set. In addition, the MFCC features are used for individual tracks. From results we found that without the dimensionality reduction both k-nearest neighbor and Support Vector Machine (SVM) gave more accurate results compare to the results with dimensionality reduction. Overall the Support Vector Machine (SVM) is much more effective classifier for classification of music genre. It gave an overall accuracy of 77%. Keywords—K-nearest neighbor (k-NN); Support Vector Machine (SVM); music; genre; classification; features; Mel Frequency Cepstral Coefficients (MFCC); principal component analysis (PCA)
منابع مشابه
A Study on Music Genre Recognition and Classification Techniques
Automatic classification of music genre is widely studied topic in music information retrieval (MIR) as it is an efficient method to structure and organize the large numbers of music files available on the Internet. Generally, the genre classification process of music has two main steps: feature extraction and classification. The first step obtains audio signal information, while the second one...
متن کاملشناسایی خودکار سبک موسیقی
Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...
متن کاملA Study on Feature Selection and Classification Techniques for Automatic Genre Classification of Traditional Malay Music
Machine learning techniques for automated musical genre classification is currently widely studied. With large collections of digital musical files, one approach to classification is to classify by musical genres such as pop, rock and classical in Western music. Beat, pitch and temporal related features are extracted from audio signals and various machine learning algorithms are applied for cla...
متن کاملAutomatic Genre Classification Using Fractional Fourier Transform Based Mel Frequency Cepstral Coefficient and Timbral Features
This paper presents the Automatic Genre Classification of Indian Tamil Music andWestern Music using Timbral and Fractional Fourier Transform (FrFT) based Mel Frequency Cepstral Coefficient (MFCC) features. The classifier model for the proposed system has been built using K-NN (K-Nearest Neighbours) and Support Vector Machine (SVM). In this work, the performance of various features extracted fro...
متن کاملClassification of musical genre: a machine learning approach
In this paper, we investigate the impact of machine learning algorithms in the development of automatic music classification models aiming to capture genres distinctions. The study of genres as bodies of musical items aggregated according to subjective and local criteria requires corresponding inductive models of such a notion. This process can be thus modeled as an example-driven learning task...
متن کاملComparing Features for the Automatic Classification of Vocal Music
Traditional approaches to the task of automatic classification of music by genre generally focus on the use of note-duration symbols to represent musical content. As well, most studies generally extract information from a combination of instruments. This paper compares the traditional method of using note-duration symbols with another method based on time slice representations of the music to s...
متن کامل